NUMBER SYSTEM (DIGITAL ELECTRONICS)

 RADIX OR BASE:-

※The number of values that a digit (one character) can have is equal to the base of the system.
※It is also called as the Radix of the system.
※ Base of Decimal (10),Hexadecimal (16),Binary (2) and Octal (8).


WEIGHT FOR DIFFERENT POSITION FOR A BINARY SYSTEM

Column numbers to the left of the binary numbers starts with 0 and go up (0,1,2........)
Column numbers to the right of the binary numbers start from -1 and become more and more negative(-1,-2,-3....)

CONVERSION FROM BINARY TO DECIMAL FORM

The general procedure for conversion from binary to decimal.

Steps to be followed:-

●Step 1) Note down the given number.
●Step 2) Write down the weight corresponding to different position.
●Step 3) Multiply each digit in the given numner with the corresponding weight to obtain product numbers.
●Step 4) Add all the product numbers to get the decimal equivalent.


Q1)
1 1 1 0
    ↓                 ↓                 ↓            ↓ 
1*2^3   + 1*2^2  +  1*2^1 + 0*2^0
=   8      +   4      +      2      +     0
 =  14
Ans:- (1110)B =(14)D




Q2) 
1 1 1 1 . 1
    ↓          ↓           ↓           ↓                ↓   
1*2^3+1*2^2+1*2^1+1*2^0+1*2^-1 
=  8      +    4     +    2     +     1      +    0.5
=  15.5
Ans:-(1111.1)B = (15.5)D

Q3)
      
1 0 1 0 . 1 1
   ↓       ↓          ↓           ↓                  ↓       ↓  
1*2^3+0*2^2+1*2^1+0*2^0+1*2^-1+1*2^-2                =  8   +   0     +     2    +    0     +   0.5   +  0.25
 =  10.75
Ans:- (1010.11)B = (10.75)D

Q4)

1 0 0 1
       ↓               ↓                   ↓              ↓
    1*2^3  +   0*2^2  +  0*2^1   +  1*2^0
     =   8    +       0      +      0        +      1
     =   9
Ans:-(1001)B = (9)D

Q5)


1 1 0 0 . 1
    ↓           ↓           ↓          ↓                   ↓
1*2^3+1*2^2+0*2^1+0*2^0 + 1*2^-1
=  8    +      4   +   0     +  0       +   0.5
=  12.5
Ans:-(1101.1)B = (12.5)D

Extra questions:-

1) (1000.11)B → (8.75 )D
2)    (0001)B  →  (01)D
3) (1010.11)B→( 10.75 )D
4) 1111.01)B →( 15.25 )D
5)  (1110)B    →  ( 14 )D
6) (1001)B     →   ( 09)D

Post a Comment

0 Comments